Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(4): 3220-3231, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36625398

RESUMO

Recently an efficient dual electroluminescence from monomers and dimers was observed among the structural examples of the emerging emitter class of carbene-metal-amides (CMAs), allowing the preparation of simple design white organic light emitting diodes (wOLEDs). Here we investigate in detail the light emission mechanism in the dimeric species of CMA emitters on the basis of a copper(I) complex TCP bearing thiazoline carbene and 10H-phenothiazine 5,5-dioxide (Ptz) ligands. The X-ray structure for crystals with dimer-only emission was obtained, revealing that emissive aggregates consist of face-to-face stacked molecular pairs with an intermolecular distance of 3.673 Å. The close packing is aided by reduced sterical bulk at the carbene ligand, as well as by a torsional twist between the carbene and amide fragments. Experimental and computational data show that the emission mechanism in aggregates is related to the formation of a persistent dimer, not the excimer. Radiative relaxation proceeds through an intermolecular charge transfer process between the carbene and amide ligands of the neighbouring molecules. In comparison to the monomer, the thermally activated delayed fluorescence (TADF) process in the dimer is characterized with significantly higher energy gaps (ΔEST) between the lowest singlet (S1) and triplet (T1) excited states. At the same time the aggregated species exhibit a significantly increased phosphorescence rate (τ = 12 µs at 10 K temperature) due to the presence of two metal atoms, resulting in a sixfold increase in the spin-orbit coupling (SOC) matrix element in comparison to the monomer.

2.
ACS Appl Mater Interfaces ; 14(13): 15478-15493, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35345881

RESUMO

Luminescent carbene-metal-amide complexes bearing group 11 metals (Cu, Ag, Au) have recently attracted great attention due to their exceptional emission efficiency and high radiative decay rates (kr). These materials provide a less costly alternative to organic light-emitting diode (OLED) emitters based on more scarce metals, such as Ir and Pt. Herein, a series of eight Cu(I) complexes bearing as yet unexplored 1,3-thiazoline carbenes have been investigated and analyzed with respect to their light emission properties and OLED application. For the first time among the class of copper-based organometallic compounds the formation of efficient electroluminescent excimers is demonstrated. The prevalence of electroluminescence (EL) from either the monomer (bluish green) or the excimer (orange-red) can be adjusted in vacuum-deposited emissive layers by altering the extent of steric encumbrance of the emitter or its concentration. Optimized conditions in terms of the emitter structure and mass fraction allowed a simultaneous EL from the monomer and excimer, which laid the basis for a preparation of a single-emitter white OLED (WOLED) with external quantum efficiency of 16.5% and a maximum luminance of over 40000 cd m-2. Wide overlapping emission bands of the monomer and excimer ensure a device color rendering index (CRI) of above 80. In such a way the prospects of copper complexes as cost-effective materials for lighting devices are demonstrated, offering expense reduction through a cheaper emissive component and a simplified device architecture.

3.
Inorg Chem ; 61(4): 2174-2185, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35038860

RESUMO

The through-space charge transfer (CT) process is observed in Cu(I) carbene-metal-amide complexes, where conventional imidazole or imidazoline N-heterocyclic (NHC) carbene fragments act as inert linkers and CT proceeds between a metal-bound carbazole donor and a distantly situated carbene-bound phenylsulfonyl acceptor. The resulting electron transfer gives a rise to efficient thermally activated delayed fluorescence (TADF), characterized with high photoluminescence quantum yields (ΦPL up to 90%) and radiative rates (kr) up to 3.32 × 105 s-1. The TADF process is aided by fast reverse intersystem crossing (rISC) rates of up to 2.56 × 107 s-1. Such emitters can be considered as hybrids of two existing TADF emitter design strategies, combining low singlet-triplet energy gaps (ΔEST) met in all-organic exciplex-like emitters (0.0062-0.0075 eV) and small, but non-negligible spin-orbital coupling (SOC) provided by a Cu atom, like in TADF-active organometallic complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...